計算工学講演会論文集 Vol. 23 (2018 年 6 月)

u-w-p定式化に基づく水~土骨格連成計算における 制約条件としての非排水条件の実装と検証

Implementation and verification of undrained condition as linear constraint condition for u-w-p formulation based soil-water coupled computation

> 豊田智大¹⁾,野田利弘²⁾ Tomohiro Toyoda and Toshihiro Noda

¹⁾修 (工) 名古屋大学 工学研究科 学生 (〒 464-8603 名古屋市千種区不老町, E-mail: toyoda.tomohiro@i.mbox.nagoya-u.ac.jp) ²⁾博 (工) 名古屋大学 減災連携研究センター 教授 (〒 464-8603 名古屋市千種区不老町, E-mail: noda@civil.nagoya-u.ac.jp)

A soil-water coupled analysis of saturated soil is usually based on the assumption of static pore fluid permeation. On the contrary, we developed "u-w-p formulation"-based two-phase finite deformation analysis code. This paper proposes a formulation which takes undrained conditions on moving boundaries as linear constraint conditions and verifies the applicability of the formulation through the numerical simulation of undrained test of rectangular specimen in a plane strain condition.

Key Words : mixture theory, soil-water coupled analysis, *u-w-p* formulation, finite deformation, high permeability

1. はじめに

混合体理論[1]に基づく飽和土の水~土骨格連成解析 は、間隙水の静的浸透を仮定する *u-p* formulation に基 づいて定式化されることが多い.筆者らは、この仮定 を導入しない *u-w-p* formulation [2]に基づく二相系有限 変形解析手法を開発してきた.本稿では、境界におけ る非排水条件を厳密に解く手法として、移動境界上の 非排水条件を制約条件式として定式化する手法を提案 するとともに、供試体の解析を通して本手法の適用可 能性を検証した結果を示す.

2. 支配方程式の要諦

著者らは, *u-p* formulation に基づく飽和土の動的/ 静的水~土骨格連成有限変形解析コード *GEOASIA* [3] の支配方程式を *u-w-p* formulation に基づいて再定式化 した.

(1) **u-w-p formulation** に基づく定式化

u-w-p formulation では,場の未知数として固相変位 速度*v_s*,液相相対変位速度*w*,間隙水圧*p*の3つをと る.支配方程式を以下に示す. 混合体の運動方程式

$$\rho_s \mathbf{D}_s \mathbf{v}_s + \rho_f \mathbf{D}_f \mathbf{v}_f = \operatorname{div} \mathbf{T} + \rho \mathbf{b} \tag{1}$$

液相の運動方程式(加速度を考慮した Darcy 則)

$$p^f \mathbf{D}_f \mathbf{v}_f = -\gamma_w \operatorname{grad} h - \frac{\gamma_w}{k} \mathbf{w}$$
 (2)

水~土骨格連成式(質量保存則)

$$\operatorname{div} \boldsymbol{v}_s + \operatorname{div} \boldsymbol{w} = 0 \tag{3}$$

ここに, $\rho = \rho_s + \rho_f$ は混合体の密度, $\rho_s = (1 - n)\rho^s$, $\rho_f = n\rho^f$ は固相と液相のみかけの密度, ρ^s , ρ^f は土粒 子と間隙水の真密度, D_s , D_f は固相と液相の物質座標 を参照する物質時間微分, v_s , v_f は固相と液相の速度, w は間隙水の相対平均流速, $h = z + p/\gamma_w$ は全ヘッド, p は間隙水圧, T は全応力, b は物体力, n は間隙率, kは透水係数, γ_w は水の単位体積重量である. なお, 式 (2) 右辺第 2 項の相互作用力は西村 [4] に倣い記述して いるほか, 土粒子と間隙水の圧縮性は無視している. 式 中の液相速度 v_f は, 相対平均流速の定義より v_s とwの 式に書き換える.

$$\boldsymbol{w} = \boldsymbol{n}(\boldsymbol{v}_f - \boldsymbol{v}_s) \tag{4}$$

$$\mathbf{v}_f = \mathbf{v}_s + \frac{\mathbf{w}}{n} \tag{5}$$

液相加速度 $D_f v_f$ も同様に,物質時間微分を D_f から D_s に統一する際に出現する移流項に注意しつつ, v_s と w で以下のように表現する.

$$D_{f}\boldsymbol{v}_{f} = D_{s}\boldsymbol{v}_{f} + (\operatorname{grad}\boldsymbol{v}_{f})(\boldsymbol{v}_{f} - \boldsymbol{v}_{s})$$

$$= D_{s}\boldsymbol{v}_{s} + \frac{1}{n}D_{s}\boldsymbol{w} + \frac{1}{n}(\operatorname{grad}\boldsymbol{v}_{s})\boldsymbol{w} + \frac{1}{n^{2}}(\operatorname{grad}\boldsymbol{w})\boldsymbol{w}$$

$$- \frac{1-n}{n^{2}}(\operatorname{tr}\boldsymbol{D}_{s})\boldsymbol{w} - \frac{1}{n^{3}}(\operatorname{grad}\boldsymbol{n} \cdot \boldsymbol{w})\boldsymbol{w}$$
(6)

ここに、 D_s は固相のストレッチングテンソルである. また、混合体の運動方程式(1)は、土の骨格構造概念を 導入した増分型の弾塑性構成式 SYS cam-clay model [5] の適用にあたり、 D_s を作用させて「速度型」にしてか ら空間離散化する.客観応力速度として Green-Naghdi rate [6] を採用し、公称応力速度 D_sS_t の標記は Yatomi et al.[7] に準拠する.

変数	空間離散化	時間離散化
\boldsymbol{v}_s	Iso-parametric 要素 ^{※1}	Wilson-θ法 ^{※2} [8]
W	Iso-parametric 要素 ^{※1}	Wilson-θ法 ^{※2} [8]
р	要素代表值(FVM)	台形公式
×1 1	次要素 ※2 躍度(加加]速度)の線形性を仮定

表-1 時空間離散化

a) 移動流量境界条件を連立しない定式化

支配方程式(1)~(3)を時空間離散化すると,方程式系 は次式(7)のような連立方程式に帰着できる.ただし, 離散化の方法は表-1に示すとおりである.

$$[A] \{ \boldsymbol{x} \} = \{ \boldsymbol{y} \} \tag{7}$$

ただし,

$$[A] = \begin{bmatrix} \frac{1}{(\theta \Delta t)^2} M + \frac{1}{6} K \\ \frac{1}{2(\theta \Delta t)^2} M_w + \frac{1}{2(\theta \Delta t)^2} [c_s] \\ \frac{1}{6} L \\ \frac{1}{(\theta \Delta t)^2} M_w + \frac{1}{2\theta \Delta t} V_w + \frac{1}{6} K_w - 2L^T \\ \frac{1}{2(\theta \Delta t)^2} M_{wn} + \frac{1}{2(\theta \Delta t)^2} [c_w] + \frac{1}{6\theta \Delta t} K_{ww} \quad \{b\} - L^T \\ \frac{1}{6} L_B & O \end{bmatrix}$$
(8)

$$\{\boldsymbol{x}\} = \begin{cases} \left. \begin{cases} \left. \boldsymbol{\ddot{\boldsymbol{v}}}^{N} \right\} \right|_{t+\theta\Delta t} \\ \left. \left. \left\{ \boldsymbol{\ddot{\boldsymbol{w}}}^{N} \right\} \right|_{t+\theta\Delta t} \\ \left. \left\{ \boldsymbol{p}^{E} \right\} \right|_{t+\theta\Delta t} \end{cases} \right\}$$
(9)

なお, *M*, *M*_w はそれぞれ混合体,間隙水の要素質量マ トリクス, *M*_{wn} = *M*_w/*n*, *K* は土骨格の接線剛性マトリ クス(自重と密度変化を考慮), *L* = *L*_B は要素の節点 速度を土骨格の体積変化率に変換する要素マトリクス, *V*_w, *K*_w, *K*_{ww} はいずれも式 (6)の相対移流項に起因す るマトリクス (ただし *K*_{ww} は離散化された「固相が液 相に及ぼす相互作用力」を含む), {*b*}, [*c*_s], [*c*_w] は物 理モデル(後述)から決まる係数マトリクスである.右 辺 {*y*} の具体形は割愛する.

b) 移動流量境界条件を連立する定式化

Lagrange の未定乗数法に基づき, 束縛のない連立方 程式(7)に対して, ある面 *a* における移動流量境界条件 を制約条件式として陽に連立する. 面 *a* での流量が *q* であるという条件は,

$$\int_{a} \boldsymbol{w} \cdot \boldsymbol{n} da = q \tag{10}$$

図-1の節点流速を用いて弱形式化すると,

$$\left(\int_{a}^{\infty} \boldsymbol{n}^{T}[N] da\right) \left\{ \boldsymbol{w}^{N} \right\} = q$$

$$C_{w} \left\{ \boldsymbol{w}^{N} \right\} = q \qquad (11)$$

図-1 非排水制約条件

これを式(7)と連立し、これに対応する束縛力を液相の 運動方程式に考慮すると、以下のような連立方程式を 解けばよいことが分かる.なお、 λ_w は未定乗数であり、 $C_w \{\lambda_w\}$ は液相に対する束縛力を表す.

$$\begin{bmatrix} \begin{bmatrix} A \end{bmatrix} & \begin{bmatrix} 0 \\ C_w^T \\ 0 \end{bmatrix} \begin{bmatrix} \left\{ \begin{matrix} \{ \vec{\mathbf{y}}^N \\ \{ \vec{\mathbf{w}}^N \\ t + \theta \Delta t \end{bmatrix} \\ \left\{ p^E \\ t + \theta \Delta t \end{bmatrix} \\ \frac{\{ p^E \\ t + \theta \Delta t \end{bmatrix}}{\{ t + \theta \Delta t \end{bmatrix}} = \begin{cases} \begin{bmatrix} \mathbf{y} \\ \frac{\{ \mathbf{y} \}}{\{ \mathbf{y}' \}} \end{bmatrix}$$
(12)

制約条件式の右辺 $\{y'\}$ には流量 q が含まれており, q = 0とすれば非排水条件を表すこととなる.

(2) u-p formulation に基づく定式化

u-p formulation では,静的浸透の仮定として

$$\mathbf{D}_f \mathbf{v}_f - \mathbf{D}_s \mathbf{v}_s \ll \mathbf{D}_s \mathbf{v}_s \tag{13}$$

を導入することにより,支配方程式(1)~(3)からwを 消去することで得られる. 混合体の運動方程式

$$\rho \mathbf{D}_s \boldsymbol{v}_s = \operatorname{div} \boldsymbol{T} + \rho \boldsymbol{b} \tag{14}$$

水~土骨格連成式 (質量保存則)

$$\frac{\rho^{f}k}{\gamma_{w}}\operatorname{div}\left(\mathrm{D}_{s}\boldsymbol{v}_{s}\right) - \operatorname{div}\boldsymbol{v}_{s} + \operatorname{div}\left(k\operatorname{grad}\boldsymbol{h}\right) = 0 \tag{15}$$

u-w-p formulation と同様に離散化すると,

$$[A^*] \{ \mathbf{x}^* \} = \{ \mathbf{y}^* \}$$
(16)

$$[A^*] = \begin{bmatrix} \frac{1}{(\theta \Delta t)^2} M + \frac{1}{6} K & -2L^T \\ \gamma_{\theta 1} L & (\theta \Delta t) H \end{bmatrix}$$
(17)

$$\{\boldsymbol{x}^*\} = \left\{ \begin{array}{c} \left\{ \boldsymbol{\dot{v}}^N \right\}_{t+\theta\Delta t} \\ \left\{ \boldsymbol{p}^E \right\}_{t+\theta\Delta t} \end{array} \right\}$$
(18)

© 一般社団法人 日本計算工学会

ただし,

$$\gamma_{\theta 1} = \frac{1}{6} - \frac{1}{2\theta\Delta t} \frac{\rho^f k}{\gamma_w} \tag{19}$$

であり,透水係数 k が大きい場合は $\gamma_{\theta l} < 0$ となって解 が求められなくなる (u-p formulation の限界).また, 式 (17) 中の H は物理モデル(後述)から決まる係数マ トリクスである.

3. 物理モデルについて

(1) u-w-p formulation

ここでは,間隙水の流れを記述する物理モデルについ て簡潔に示す.また,物理モデルの定式化手法は Christian-田村流の物理モデル [9], [10] の拡張適用 [11] に準 拠する.

液相の運動方程式(2)の弱形式をとる際,任意関数を δνとすれば,右辺第1項の弱形式は Gauss の発散定理 より,

$$\int_{v} \delta \mathbf{v} \cdot (\operatorname{grad} h) dv = \int_{a} \delta \mathbf{v} \cdot h \mathbf{n} da - \int_{v} h(\operatorname{div} \delta \mathbf{v}) dv \quad (20)$$

とかけるが,2次元平面ひずみ問題の場合,さらに右辺 第1項を境界ヘッド *h*_cを用いて

$$\int_{a} \delta \boldsymbol{v} \cdot h \boldsymbol{n} da = \sum_{m=1}^{4} \left\{ \delta \boldsymbol{v}^{N} \right\}^{T} \left(\int_{a_{m}} \boldsymbol{n}^{T} [N^{m}] da \right)^{T} h_{c} \qquad (21)$$

と書くこともできる. *u-w-p* formulation では, この「境 界上のヘッド h_c 」を求めるために物理モデルを使う.

u-w-p formulation においては式(6)の移流項が出現す るが、本稿では簡単のため、これを無視した物理モデ ルの定式化について示す(数値解析においては考慮さ れている).図-2をもとに、境界における連続式を立 てると、以下のようになる.

$$\int_{a^m} \boldsymbol{w}^A \cdot \boldsymbol{n}^m da = \int_{a^m} \boldsymbol{w}^m \cdot \boldsymbol{n}^m da \qquad (22)$$

これに液相の運動方程式(2)と有限体積法による動水勾 配の近似式

$$(\operatorname{grad} h)_A = \frac{h_c - h_A}{l_A^m} \frac{l^m}{l^m}$$
(23)

$$(\operatorname{grad} h)_m = \frac{h_m - h_c}{l_m^m} \frac{l^m}{l^m}$$
(24)

を代入し, hc について解くことで次式が得られる.

$$h_{c} = \alpha'_{A}h_{A} + \alpha'_{m}h_{m} + B'\{\dot{v}_{s}^{m}\} + B'_{n}\{\dot{w}^{m}\}$$
(25)

α'_A, α'_m, B', B'_n は要素 A, m での透水係数,透水距離 などから決まるが,具体形は省略する.

なお,この式は慣性がなければ $h_c = \alpha'_A h_A + \alpha'_m h_m と$ なり, $h_c \epsilon h_A > h_m$ の重み付け平均で表現する式となる.これを式 (21) に代入することで, $h_c \epsilon$ 面上のヘッド代表値とした面積積分が計算できる.

図-2 隣接要素間での定式化

(2) u-p formulation

u-p formulation の連成式 (15) の体積積分を離散化する. 左辺第三項について,式 (25) を *u-p* 仮定 (13) を考慮しつつ代入して展開すると,

$$\int_{v} \operatorname{div} (k \operatorname{grad} h) dv = \int_{a} (k \operatorname{grad} h) \cdot \boldsymbol{n} da$$
$$= \sum_{m=1}^{4} k_{A} \frac{h_{c} - h_{A}}{l_{A}^{m}} \frac{\boldsymbol{l}^{m}}{l_{m}} \cdot \boldsymbol{n}^{m} da$$
$$= \sum_{m=1}^{4} \gamma_{w} \alpha_{m} (h_{m} - h_{A}) + \sum_{m=1}^{4} \frac{\rho^{f} k}{\gamma_{w}} \beta_{m} L_{B}^{m} \{ \dot{\boldsymbol{v}}_{s}^{m} \} \quad (26)$$

この式はある要素 A からの(静的な) 湧き出し流 量を表す式であり, 土骨格の慣性を無視できるとき $\int_{v} \text{div} (k \text{grad } h) dv = \sum_{m=1}^{4} \gamma_{w} \alpha_{m} (h_{m} - h_{A})$ となることから, 係数 α を決めることは「各面での流量を求める操作」 に等価であることがわかる.なお, α_{m} , β_{m} ともに透水 係数,透水距離などから決まる係数である.

境界面における物理モデルの係数は、1) 非排水面で あれば、隣接要素の透水係数 km をゼロとして算出し、 2) 排水面であれば、隣接要素の透水距離 lm をゼロと して算出する.また、u-w-p formulation の物理モデル は、液相の運動方程式中の動水勾配 gradhの展開に用 いられ「要素境界のヘッドを決定する」という役割を果 たすのに対し、u-p formulation の物理モデルは、境界 ヘッドを決定した上でさらに展開して、連成式中の湧 き出し div (kgradh)の離散化に用いられ「要素間の流量 を決定する」という役割を果たす.このように、u-w-p formulation と u-p formulation では、物理モデルの適用 方法とその役割が異なる.

4. 2相系高透水性供試体の有限変形シミュレーション 図-3(a)に示すような、非排水条件下で平面ひずみ矩 形供試体(1/4 断面)を鉛直方向に圧縮したときの変形 問題を解く.ここでは、*u-w-p* formulation により以下 の3つの条件で解析を行った.

 Case A.
 非排水制約条件なし(境界のwは自由)

 Case B.
 非排水制約条件なし(境界のwは固定)

 Case C.
 非排水制約条件あり

Case A. は、物理モデルによる非排水条件のみを課し、 wに関しては一切境界条件を課さない場合, Case B. は、 物理モデルによる非排水条件に加え、wに関する境界 条件を"節点ごとの境界条件"として与える場合, Case C. は、物理モデルによる非排水条件に加え、wに関す る境界条件を"面ごとの制約条件"として与える場合 にそれぞれ対応する.

(1) 解析条件

初期条件,境界条件,材料定数を以下に示す.

a) 初期条件

等方応力下にある供試体は初期に静止しているとして、領域内の固相変位速度と間隙水相対変位速度をゼロとした.また、初期間隙水圧として背圧-300kPa(負圧)を作用させ、土骨格の初期比体積は v₀ = 2.17 とした.

b) 土骨格の境界条件

図-3(b)のような10cm×10cmの1/4矩形供試体を,平面ひずみ条件のもと,上端を一定の軸変位速度10⁻²m/s(高速,Lagrangeひずみで10%/sec)で変位させて圧縮した.上下左端の面は摩擦なし条件とし,面に垂直方向の変位のみを固定する.また,動的有限変形解析の効果により非一様変形が生じるため,右面の境界は刻々と移動・傾斜してゆく.

c) 間隙水の境界条件

(有限要素法より節点ごとに与える)

Case A. と Case C.

節点ごとのwはすべて自由(未知)とする.

Case B.

供試体全周において、図-3(c)のように、上下面では wの鉛直成分 $w_y = 0$ をゼロ、左右面ではwの水平成分 $w_x = 0$ とする境界条件を課す.ただし、右面は傾斜し うるため、この条件式だけで非排水条件を厳密に満足 することはできない.

d) 間隙水の境界条件

(物理モデルより境界の辺ごとに与える)

図-3(d)のように、物理モデルにおいて上下左右すべての面を非排水条件(隣接要素の透水係数がゼロ)と考えることにより、非排水試験を想定した.

e) 間隙水の境界条件

(非排水制約条件式として境界の辺ごとに与える)

Case A. と Case B.

制約条件としての非排水条件式を連立しない. Case C.

図-3(e)に示す境界上の各辺において、制約条件式(11) を立てて支配方程式中に連立する.こちらは、Case B. と異なり、傾斜を伴う移動境界上においても積分流量 が零であることを保証する.

f) 材料定数

修正 Cam-clay model の材料定数は、表-2 のとおり設定する.透水係数は高透水性材料として $k = 10^{-2}$ (cm/s) とした.

g) 計算条件

Wilson-*θ*法における*θ*の値は 1.4 とし,解析中の時間 刻み幅は**表-3**のとおり与えた.

(2) 解析結果

計算は供試体の 1/4 断面で行っているが,以下に示す 解析結果は,供試体全断面として出力している.

a) Case A.

Case A.: 物理モデルによる非排水条件のみを課し, w に関しては一切の境界条件を課さない場合, 図-4 に示 す流速分布のように,計算は発散してしまう.この原 因は,以下のように考えられる.

「3. 物理モデル」で述べたように, *u-w-p* formulation における物理モデルは,液相運動方程式中で「要素境 界での全ヘッドの値を決める」ために用いられる.と くに,物質の表面において物理モデルの係数群を決定 する操作は,境界における辺上の水圧の境界値を与え ることに他ならない.すなわち,物理モデルによる非 排水条件はあくまでも水圧 *p* の境界条件にすぎず,境 界における相対平均流速 *w* の境界条件は別途指定する 必要があることを意味している.換言すれば,この解 析が発散したのは,*w* に関する境界条件の不十分な設 定によるものである.

2V - 4 10 11 AL 8A

弾塑性パラメータ				
王縮指数 $\tilde{\lambda}$	0.500			
膨潤指数 ĸ	0.040			
NCL の切片 N	2.40			
限界状態定数 M	1.40			
ポアソン比 <i>v</i>	0.30			
物性值				
土粒子の密度 $ ho^{s}$ (g/cm ³)	2.65			
間隙水の密度 ρ^f (g/cm ³)	1.00			
透水係数 k (cm/s)	10 ⁻²			
水の単位体積重量 γ _w (kN/m ³)	9.81			
水の体積弾性率 K_f (kN/m ²)	∞			

※1 括弧内の値は解析結果に影響を与えない

表_3 ₿	寺間刻	み幅
-------	-----	----

stage	step 数	時間刻み幅 $\Delta t(sec)$	時間 <i>t</i> (sec)
1	100000	10 ⁻⁸	0.001
2	100000	10^{-7}	0.011
3	300000	10 ⁻⁵	3.011

図-4 Case A. 流速 w の発散 (t=0.00050sec)

b) Case B.

Case B.: 物理モデルによる非排水条件に加え, w に関 する境界条件を"節点ごとの境界条件"として与える場 合について, 流速分布の推移を図-5 に示す. この Case では発散することなく計算を継続することができる. こ れは, 流速場 w の境界条件を陽に与えることで, Case A. のような境界条件の不足が解消されたことによる.

また,流速分布の推移をみると,同図 (a)~(b) の初 期においては高次の複雑な水の migration が生じている が,時間が経過した (c)~(d) の段階では高次の流速分布 は Darcy 則にしたがう抵抗力により消散し,rotational な流れのみが残ることが分かる.この時刻における流 速は,振動 ((c) のような左廻りの渦と (d) のような右 廻りの渦が周期的に交互に生じる)を伴って推移する. また,変形が十分に進行した段階 (e) では,Darcy 則に したがう抵抗力の効果で,流速はほぼ完全に減衰して いる.

ただし,この計算は,領域右側の移動境界が回転し

ないという仮定の下での計算であるため,面が回転す れば非排水移動境界上の流量保存則は厳密には満足さ れなくなってしまうという欠点がある.

c) Case C.

最後に, Case C.: 物理モデルによる非排水条件に加 え, wに関する境界条件を"面ごとの制約条件"とし て与える場合について, 流速分布の推移を図-6 に示す. この Case においても, 発散することなく計算を継続す ることができている.

Case A. ではwに対する条件式が欠落していたため発 散したのに対し, Case B. では, wの境界条件を節点ご とに与えることで発散することなく求解が可能となっ たものの,移動(とくに回転)を伴う境界においては 境界上の辺において非排水条件を厳密に満足すること が困難であった.これに対し Case C. では, wに対する 境界条件のかわりに非排水条件 $\int_{a} w \cdot nda = 0$ を陽に連 立して解くため,移動境界における非排水条件を厳密 に満足しながら積分してゆくことが可能となる.

一方, 図-6 の流れ場について, (a)~(b) の初期に乱 雑な流速の振動が起こる点は Case B. に一致するが, そ の後 (c)~(d) にかけての流速は, Case B. では rotational に振動するのに対し, こちらは領域の中心から「供試 体の隅に向かう流速場」と「供試体の辺に向かう流速 場」が周期的に交互に出現する結果となった.

5. 結論

本稿では, *u-w-p* formulation に基づく水~土骨格連 成有限変形解析手法に対して,移動流量境界を念頭に, ここでは非排水条件を制約条件式として陽に連立する 手法を示すとともに,その手法の妥当性について検討 した結果を示した.得られた結論を以下に示す.

- 非排水制約条件式を導入することで、計算が発散 することなく水~土骨格連成問題を厳密に解くこ とができる。
- 物理モデル(有限体積法)による非排水条件は間隙水圧 pに対する境界条件に過ぎず,移動境界上の相対平均流速 wの境界条件は別途指定する必要がある。

謝辞: 本研究は,科学研究費補助金(基盤研究(A):課 題番号 25249064)の補助を受けて実施した.

付録: u-w-p formulation を積極的に採択する理由

静的浸透の仮定を導入しない厳密な定式化手法である Full-formulation は,液相の運動を記述する変数として液相の速度 v_f を採用する u-U-p formulation と,間隙水の相対平均流速 w を採用する u-w-p formulation の 2 種類に大別される.著者らが,この中でもとくに u-w-p formulation を選択している理由は以下の2つである.

1) 間隙率が不連続な場においても w の連続性が保証されていること

簡単のため、土骨格の運動を固定したときの純粋な 浸透の問題を考える ($v_s = 0$). 間隙率の不連続面が固 定された領域内に存在するとき、連続式より不連続面 上においてもwは唯一に決定できるが、 $v_f = w/n$ は不 連続面を挟んで不連続となってしまう.

2) 制約条件式の表現が簡単になること

移動流量境界は, *u-w-p* 形式では式 (10) のように表 されるが, *u-U-p* 形式では, 次のような固相速度 *v*_s を 含む方程式となる.

$$\int_{a} \left\{ n \left(\mathbf{v}_{f} - \mathbf{v}_{s} \right) \right\} \cdot \mathbf{n} da = q$$
(27)

このとき,移動流量境界を制約条件式として連立した ときの束縛力は,液相の運動方程式だけではなく,混 合体の運動方程式に対しても考慮しなくてはならない.

また、この式は間隙率nを含んでいることから、離散 化のためにはnの空間分布(境界上のGauss 点における nの値)を決めなくてはならない.この問題は、u-U-pformulationの連成式においても生じる.

参考文献

- Biot, M. A.: Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low-frequency range, Journal of Acoustic Society of America, Vol.28, No.2, pp.168-178, 1956.
- [2] Zienkiewicz, O. C., Chan, A. H. C., Pastor, M., Schrefler, B. A., and Shiomi, T.: Computational geomechanics with special reference to earthquake engineering, John Wiley & Sons, pp.29-30, 1999.
- [3] Noda, T., Asaoka, A. and Nakano, M.: Soil-water coupled finite deformation analysis based on a rate-type equation of motion incorporating the SYS cam-clay model, Soils and Foundations, Vol.48, No.6, pp.771-790, 2008.
- [4] 西村直志: 地盤工学ハンドブック 第3章土質力学, (社) 地盤工学会, pp.51-64, 1999.
- [5] Asaoka, A., Noda, T., Yamada, E., Kaneda, K. and Nakano, M.: An elasto-plastic description of two distinct volume change mechanisms of soils Soils and Foundations, Vol.42, No.5, pp.47-57, 2002.
- [6] Green, A. E. and Naghdi, P. M.: A general theory of elasto-plastic continuum, Archive for Rational Mechanics and Analysis, Vol.18, pp.251-281, 1965.
- [7] Yatomi, C., Yashima, A., Iizuka, A. and Sano, I.: General theory of shear bands formation by a non-coaxial cam-clay model, Soils and Foundations, Vol.29, No.3, pp.41-53, 1989.
- [8] Wilson, E. L., Farhoomand, I. and Bathe, K. J.: Nonlinear dynamic analysis of complex structures, Int. J. Earthquake Eng. and Struct. Dynamics, 1, pp.241-252, 1973.
- [9] Christian, J. T.: Undrained stress distribution by numerical method, Proceedings of ASCE, Vol.94, SM6, pp.1331-1345, 1968.
- [10] 赤井浩一,田村武:弾塑性構成式による多次元圧 密の数値解析,土木学会論文集,Vol.269, pp.95-104, 1978.
- [11] Asaoka, A., Nakano, M., Noda, T.: Soil-water coupled behavior of saturated clay near/at critical state, Soils and Foundations, Vol.34, No.1, pp.91-106, 1994.