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Figure 1. 3D finite element mesh
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The seismic wave propagation is strongly affected by the ground non-uniformity. Especially in the
sedimentary basin, the amplification in the sedimentary layer, the lens effect, and the edge effect due to
the interference of the surface wave generated at the edge of the basin cause the strong ground motion.
In this abstract, we conducted a single-phase elastic/two-phase (i.e., soil-water coupled) elasto-plastic
seismic response analysis for the three-dimensional spherical basin shown in Table 1(d) and investigated
the effects of three-dimensional structures, elasto-plasticity, and the presence of pore water.

First, a single-phase elastic analysis was performed on the three-dimensional mesh (conformed to
Miyamoto et al.[1]) shown in Fig. 1. The analysis was conducted with the analysis code GEOASIA[2]
developed by the authors. Assuming a plane strain shear box test, the displacement of the front and back
surfaces in y-direction was fixed and the periodic boundary was imposed on the left and right surfaces. At
the bottom of the model, the vertical displacement was fixed and the viscous boundary condition was
imposed in the horizontal direction. The EW component of the Kobe wave shown in Fig. 2 was applied in
the x-direction as an input wave. As for the elastic material constants, we considered a clear rigidity
contrast (11.4 times in the impedance ratio) between the sedimentary layer and the bedrock. As an
analysis result, we confirmed the initial emergence of the ring-shaped strain concentration (Fig. 3), the
occurrence of the three-dimensional waves and its long-term retention (Fig. 4).

Next, we compared the three-dimensional result with the reduced-dimensional model shown in Table
1(a)-(c) for evaluating the effect of the three-dimensionality of the sedimentary basin. Figure 5 shows the
horizontal response on the ground surface at the center of the basin. As indicated in the figure, all
reduced models underestimated the maximum acceleration and the residence time of seismic motion.
The result suggests the limitation of the evaluation by the reduced-dimensional model. As for the spectral
characteristics, the transfer function of the sedimentary layer at the center of the basin in the
three-dimensional case in Fig. 6(d) indicated the amplification in the various frequency range, whereas
the one-dimensional calculation in (a) just exhibited the theoretical solution.

Moreover, we conducted the two-phase elasto-plastic analysis. The SYS Cam-clay model [3] was used as
the elasto-plastic constitutive equation. The typical parameters for consolidated rock and loose sand were
assumed for the bedrock and the sedimentary layer, respectively. The analysis results for 1/10 amplitude
of the Kobe wave indicated the decrease of the effective stress (liquefaction) in Fig. 7 and the sloshing
behavior of the entire sedimentary layer in Fig. 8. The occurrence of liquefaction could also be confirmed
in Fig. 9. Furthermore, the running transfer function in Fig. 10 indicated that the liquefaction reduced the
transfer of the shear wave in the sedimentary layer.
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