封入空気を考慮可能な水分特性モデルによる 繰返し吸排水三軸試験の数値シミュレーション

Numerical Simulation of Cyclic Water Absorption-Drainage Triaxial Test Using a Soil Water Characteristic Model Taking Trapped Air into Consideration

吉川高広¹⁾,野田利弘²⁾,中澤一眞³⁾

Takahiro Yoshikawa, Toshihiro Noda and Kazumasa Nakazawa

1) 博(工) 名古屋大学 大学院工学研究科 助教 (〒464-8601 名古屋市千種区不老町, E-mail:

yoshikawa.takahiro@b.mbox.nagoya-u.ac.jp)

2) 博(工) 名古屋大学 減災連携研究センター 教授 (〒464-8601 名古屋市千種区不老町)

3) 修(工) 名古屋大学 大学院工学研究科 卒業生(〒464-8601 名古屋市千種区不老町)

Numerical simulations of cyclic water absorption-drainage triaxial tests were performed using a soil water characteristic (SWC) model taking trapped air into consideration. It was demonstrated that a mere consideration of transition between trapped air and continuous air in the SWC model allowed us to express the hysteresis of the saturation degree during water absorption-drainage. In addition, unexhausted and undrained triaxial compression tests of two specimens with the same zero suction but with different saturation degree due to difference in water absorption-drainage history were well simulated.

Key Words : Soil Water Characteristic Model, Trapped Air, Unsaturated Triaxial Test

1. はじめに

不飽和土の水分特性曲線が吸排水時のヒステリシス性 を持つ要因として、インク瓶効果、間隙水と土粒子の接触 角の影響、空気の封入の影響が挙げられている.本研究で は、空気の封入の影響により生じるヒステリシス性に注 目して不飽和シルトを用いた繰返し吸排水履歴に関する 三軸試験^[1]の数値シミュレーションを実施した.シミュレ ーションに用いた水分特性モデル^{[2],[3]}の特徴は、間隙空気 を「封入空気」と「連続した相として存在する空気(連続 空気)」に明確に分け、この考え方に基づいて新たに定義 した有効飽和度を用いる点と、封入空気と連続空気が吸 排水に伴い遷移する点である.まず、次章では解析手法の 概要を述べる.

2. 解析手法の概要

解析手法の詳細は別文献^{[2], [3]}を参照されたい.ここで はその要点を述べる.図-1は土の示相図および各種諸量 の定義を示す.土を「土粒子」「吸着水」「自由水」「封 入空気」「連続空気」に明確に分けて扱う.土粒子と吸着 水が一体となって「土骨格」を形成し,土粒子と吸着水を 除く部分を土骨格の体積変化に有効な間隙(以後「有効間 隙」)と考える.有効間隙が土全体に占める体積割合を有 効間隙率 n_eとする.封入空気は自由水に封入されている ため,自由水+封入空気が有効間隙に占める体積割合を 新たに有効飽和度 S^ee と定義し,S^ee サクション・間隙比 等を水分特性式で関係付ける.また,自由水が自由水+封 入空気に占める体積割合を自由、適和度 S^ee と定義し,未 知変数として扱う.吸着水は、高サクション時に土粒子表 面に吸着した水であるため、含水比w.で定義し、簡単の ため材料定数と考える(吸着水は非圧縮と仮定).最終的 に解くべき方程式は、運動方程式、自由水〜土骨格連成式、 封入空気〜土骨格連成式および連続空気〜土骨格連成式 である.既往の空気〜水〜土骨格連成の変形解析手法と 比べて、S¹^wが新たに未知数として増えるが、連続空気に 加えて封入空気の質量保存則も支配方程式として用いる ため、未知数と方程式の数は一致する.ただし、封入空気 の圧力は自由水の圧力に等しいと仮定する.

また不飽和土は、例えば、吸水時には連続空気の一部が 封入空気に、排水時には封入空気の一部が連続空気に遷 移すると考えられる.そこで、封入空気と連続空気の質量 交換を考慮するため、封入空気と連続空気がそれぞれ単 位時間・単位体積当たりに湧き出す質量 $m_{la} \ge m_{ga}$ に対し て、次に示す簡単な遷移モデルを考える.なお、 $m_{la} + m_{ga} = 0$ である. (i) 連続空気から封入空気への遷移 ($\dot{S}^{l}_{e} \geq 0$ の場合)

有効飽和度 S_{e}^{l} の土骨格から見た物質時間微分 $S_{e}^{l} \ge 0$ の ときに遷移すると考える. $S_{e}^{s} = 0$ で連続空気が存在しな いとき、および、 $S_{e}^{s} = 1$ で自由水が存在しないときは封入 空気への遷移は生じないため、次に示すようなモデルを 考えた.

$$\frac{m_{\rm la}}{\rho^{\rm la}} = n_{\rm e} \alpha^* S_{\rm e}^{\rm g} \left(1 - S_{\rm e}^{\rm g}\right) \dot{S}_{\rm e}^{\rm l} \tag{1}$$

ここにα^{*}は材料定数で,値が大きいほど遷移量が多い.

(ii) 封入空気から連続空気への遷移(*Ś*^l < 0 の場合)

 $\dot{S}^{l}_{e} < 0$ のときに遷移すると考える. $S^{a}_{l} = 0$ で封入空気が存在しないときは遷移しない.また, $S^{a}_{l} = 1$ のときは自由水が存在せず,有効間隙が全て連続空気であることを意味するため,このような状態は定義できない.このため,次に示すようなモデルを考えた.

$$\frac{m_{\rm ga}}{\rho^{\rm ga}} = n_{\rm e} \mu^* \ln \left(1 - S_1^{\rm a} \right) \dot{S}_{\rm e}^{\rm 1}$$
(2)

ここに µ* は材料定数で, 値が大きいほど遷移量が多い. 本稿では, S^l にGallipoli et al.^[4]の水分特性式を用いる. Seに対してはヒステリシス性モデルを導入せず,式(1)と 式(2)に示した封入空気と連続空気の遷移に起因する飽和 度~サクション関係のヒステリシス性に注目して,数値 シミュレーションを行った.本解析モデルでは $\alpha^* \ge \mu^*$ が材料定数として新しく加わるが、「最大飽和度」と「ヒ ステリシス性を表現するために導入するパラメータ」が 不要なため、一般的なヒステリシス性モデルと材料定数 の数は同じである.また、土骨格の弾塑性構成式は、SYS Cam-clay model^[5]に対して、京川ら^[6]・Zhang & Ikariya^[7]を 参考に、正規圧密線の切片Nと限界状態線の切片ΓがSelに 応じて変化する手法を導入し,応力の式には骨格応力[8]を 用いた.なお、本稿では、一様変形場を仮定して三軸試験 の数値シミュレーションを実施し、構成式と水分特性式 の応答を出力した.

実験条件と計算条件

(1) 実験条件

実験に用いた土試料は非塑性シルト(DLクレー)であ る.繰返し吸排水履歴に関する実験を2種類実施した.(A) 同じサクションで繰返す吸排水試験と(B)排水時のサク ションを段階的に上昇させつつ繰返す吸排水試験である. 以下に各実験の手順を示す.

(A) 同じサクションで繰返す吸排水試験

(i) 含水比20%になるように調整した土試料をモールド 内で静的に締固めて,間隙比1.18,飽和度46%の円筒供試 体(直径50mm,高さ100mm)を作製する.(ii)供試体を 三軸試験機に設置し,排気非排水条件下でセル圧を20kPa まで上昇させる.(iii) セル圧と空気圧を同時に上昇させ て,セル圧270kPa,空気圧250kPaにする(このとき水圧は 約230kPa, サクションは約20kPa). (iv) 供試体のサクシ ョンを変えずに排水条件にして, セル圧を450kPaまで上 昇させて, 基底応力200kPaで等方圧密する. (v) 基底応力 一定の下, まずサクション20kPaから0kPaに低下させて (この過程を0回目と呼ぶ), その後サクションを0と 30kPaの間で吸排水を2回繰返す試験を実施した.

(B) 排水時のサクションを段階的に上昇させつつ繰返す 吸排水試験

実験(A)の場合と(i), (ii)の過程は同じである. (iii) セル 圧と空気圧を同時に上昇させて、セル圧60kPa、空気圧 40kPaにする(このとき水圧は約20kPa, サクションは約 20kPa). (iv) 供試体のサクションを変えずに排水条件に して、セル圧を240kPaまで上昇させて、基底応力200kPaで 等方圧密する.(v)水圧を40kPaまで上昇させて、サクシ ョン20kPaから0kPaに低下させる(この過程を0回目と呼 ぶ). (vi) セル圧・空気圧・水圧を同時に上昇させて、セ ル圧を450kPa, 空気圧と水圧を250kPaにする. この過程は 飽和土の三軸試験における背圧上昇過程に対応して、実 験(A)の場合より飽和度は高くなる. (vii) 基底応力一定の 下, サクション0kPaから, 0→20→0→25→0→30→0kPaと 排水時のサクションを段階的に上昇させて吸排水を3回 繰返す試験を実施した. (viii) (vii)の後にサクション0kPa で非排気・非排水三軸圧縮試験を行った.また,別の供試 体を用いて,吸排水を繰返す前の(vi)の過程後にもサクシ ョン0kPaの非排気・非排水三軸圧縮試験を行った.

なお,(A)と(B)のどちらにおいても、サクションを変化 させる際は、基底応力一定の下、サクション上昇時にはセ ル圧と空気圧を、サクション低下時には水圧を上昇させた.

(2) 計算条件

サクション0kPaのときは封入空気量(自由水飽和度 S^wの値)が明確であるため,(A)では1回目の排水過程開始時,(B)では0回目の吸水過程終了後の背圧上昇過程開始時を 初期状態とした.また,(A)と(B)の実験において,吸水コ ラプスが生じた0回目の吸水過程終了後は,吸排水過程を 繰返しても間隙比変化がほぼ生じなかった^[1]ため,まずは 水分特性モデルのみの妥当性を検証するために,変形が 生じない条件下で,数値シミュレーションを行った.

表-1は土骨格の構成式に関する材料定数を示す. Yoshikawa et al.^[9]のDLクレーのパラメータを参考にして 値を決定した.表-2は水分特性式に関する材料定数およ びその他の物性値を示す.水分特性式に関する材料定数 は,(A)の1回目の吸排水過程と,別で実施した初期間隙比 が異なる場合の1回目の排水過程を最もよく再現できる 値に決定した.この材料定数を用いて,(A)の2回目の吸排 水過程と(B)のシミュレーションを行った.表-3は実験(A) と(B)のシミュレーションに用いた初期値を示す.実験結 果に基づいて各初期値を設定した.

弾塑性パラメータ				
$S_{c}^{l} = 1$ における限界状態線の $p' = 0$ 81 kPa $q = 0$ kPa のときの比体積	Г	1.95		
96.1 kha, $q = 0$ khaのときの比体積 $S_e^l = 0$ における限界状態線の $p' = 0$	$\Gamma_{\rm r}$	2.07		
98.1 kPa, q=0 kPa のとさの比体積 限界状態定数	M	1.33		
圧縮指数	ñ	0.05		
膨潤指数	$\widetilde{\kappa}$	0.01		
ポアソン比	V	0.3		
発展則パラメータ				
正規圧密土化指数	т	0.3		
構造劣化指数	а	1.0		
構造劣化指数	b	1.0		
構造劣化指数	С	1.0		
構造劣化指数	C_s	0.8		
回転硬化指数	b_r	0.0		
回転硬化限界定数	m_b	0.0		

表-1 土骨格の構成式に関する材料定数

表-2 水分特性に関する材料定数およびその他の物性値

水分特性					
吸着水含水比 %	Wr	0.0			
van Genuchten パラメータ kPa ⁻¹	α	0.044			
van Genuchten パラメータ ($m'=1-1/n'$)	n'	2.1			
Gallipoli パラメータ	Ψ	3.0			
封入空気への遷移パラメータ	$lpha^*$	2.62			
連続空気への遷移パラメータ	μ^{*}	1.65			
物性值					
土粒子密度 g/cm ³	$ ho^{ m s}$	2.704			
水の体積弾性係数 kPa	K_{w}	2.19×10^{6}			
空気の気体定数 m²/s²/K	\overline{R}	287.04			
	Θ	293.15			

表-3 実験(A)と(B)のシミュレーションに用いた初期値

		(A)	(B)	
構造の程度	$1/R_{0}^{*}$	3.06	2.24	-
過圧密比	$1/R_0$	1.20	1.20	
間隙比	e ₀	0.98	0.97	
応力比	η_0	0.0	0.0	
異方性の程度	ζ_0	0.0	0.0	
自由水飽和度	$S_{1 0}^{w}$	81.36	81.52	

4. 実験結果と計算結果の比較

(A)同じサクションを繰返す吸排水試験について、図-2 と図-3はそれぞれ実験結果と数値シミュレーション結果 を示す.まず,有効飽和度 S^l ~サクションp^s関係にヒステ リシス性を導入せずとも、封入空気と連続空気の遷移を 考慮するだけで、実験結果の飽和度S_r~p^s関係のヒステリ シス性を表現可能である.特にp^s=0kPaのときに注目する と、吸水過程終了時の飽和度が,1回目より2回目の方が排 水過程開始時の飽和度に近づく様子も再現できている. これは式(2)より,自由水飽和度 S^I が低くなるほど,封入 空気が連続空気に遷移する量が大きくなるためである.

(B)排水時のサクションを段階的に上昇させつつ繰返す 吸排水試験について、図-4と図-5はそれぞれ実験結果と 数値シミュレーション結果を示す.まず背圧上昇過程に おいて、p^s=0kPaでの飽和度上昇を封入空気の圧縮(S^w の上昇)により表現可能である.次に、排水時のサクショ ンを段階的に上昇させて吸排水過程を繰返すと、p^s=0kPa での飽和度が徐々に低下し、空気の封入量が増加してい く(S^wが低下する)様子が再現できている.ただし、実 験に比べて数値シミュレーションでは、1回目の吸排水過 程における空気の封入量が小さい.今後は式(1)と式(2)の 遷移モデルを中心に、解析手法の改良を行う必要がある.

最後に(B)について、図-6と図-7はそれぞれ、背圧上昇 過程後および吸排水過程を3回繰返した後に、p^s=0kPaで 非排気・非排水三軸圧縮試験を行ったときの実験結果と 数値シミュレーション結果を示す.ここまでは変形が生 じない条件を与えていたが,その制約を取り外して,両ケ ースとも同じ背圧上昇過程開始時を初期状態としてせん 断までの一連の過程をシミュレートした.実験結果とシ ミュレーション結果を比較すると,吸排水履歴が異なる 非排気・非排水三軸圧縮挙動の特徴を捉えられている.特 に吸排水過程を繰返さない場合の骨格応力経路では,SYS Cam-clay model^[5]の上負荷面が記述する構造の劣化によ り,限界状態線下側での軟化挙動を表現できている.

(限界状態線下側での軟化と硬化の違いを表現)

5. おわりに

本稿では、封入空気を考慮した水分特性モデル^{[2], [3]}を 用いて、不飽和シルトの繰返し吸排水三軸試験^[1]の数値シ ミュレーションを行った.まず、封入空気と連続空気の吸 排水に伴う遷移を考慮するだけで、有効飽和度〜サクシ ョン関係にヒステリシス性を導入することなく、実験で 得られた飽和度〜サクション関係のヒステリシス性を表 現できることを示した.また、サクションが同じゼロであ っても、吸排水履歴の違いで飽和度が異なる挙動を表現 でき、さらには、それら供試体に対して実施した非排気・ 非排水三軸圧縮試験において、吸排水履歴の違いにより、 一方は軟化、他方は硬化を示す挙動も表現できることを 示した.本稿では、サクションがゼロでの飽和度変化に注 目したシミュレーション結果を示したが、最大飽和度を 材料定数で与える既往の手法ではこのような挙動を表現 できない点を強調しておく.

謝辞: JSPS科研費17H01289および17K14720の助成を受けた.ここに謝意を表します.

参考文献

- [1] 吉川高広,野田利弘,中澤一眞:不飽和シルトを用い た繰返し吸排水履歴に関する三軸試験,第54回地盤 工学研究発表会,2019.
- [2] 野田利弘,吉川高広,西垣隆士:新たに定義する有効 飽和度に基づく不飽和土の有限変形解析手法の提案, 第53回地盤工学研究発表会, pp. 725-726, 2018.
- [3] 吉川高広,野田利弘,西垣隆士:新たに定義する有効 飽和度に基づく不飽和土の有限変形解析手法の開発 と検証,第30回中部地盤工学シンポジウム,pp. 13-18, 2018.

- [4] Gallipoli, D., Wheeler, S.J. and Karstunen, M.: Modelling the variation of degree of saturation in a deformable unsaturated soil, Géotechnique, 53(1), 105-112, 2003.
- [5] Asaoka, A., Noda, T., Yamada, E., Kaneda, K. and Nakano, M.: An elasto-plastic description of two distinct volume change mechanisms of soils. Soils and Foundations, 42(5), 47-57, 2002.
- [6] 京川裕之, 菊本統, 中井照夫, Hossain Md. Shahin: サ クション・飽和度・密度を統一的に考慮できる不飽和 土の弾塑性モデル, 応用力学論文集, 12, 331-342, 2009.
- [7] Zhang, F. and Ikariya, T.: A new model for unsaturated soil

using skeleton stress and degree of saturation as state variables, Soils and Foundations, 51(1), 67-81, 2011.

- [8] Jommi, C.: Remarks on the constitutive modelling of unsaturated soils, Experimental Evidence and Theoretical Approaches in Unsaturated Soils (eds. by Tarantino, A. and Mancuso, C.), Balkema, 139-153, 2000.
- [9] Yoshikawa, T., Noda, T. and Kodaka, T.: Effects of air coupling on triaxial shearing behavior of unsaturated silty specimens under constant confining pressure and various drained and exhausted conditions, Soils and Foundations, 55(6), 1372-1387, 2015.