^{第Ⅲ部門} 地盤の応力と変形 (2)

2023年9月14日(木) 10:40 ~ 12:00 III-1 (広島大 東広島キャンパス総合科学部講義棟 K 3 0 3)

[III-10] 波浪海底液状化の有限要素解析と理論解の比較による解析領域の打ち切りの影響の検討

Discussion on influence of limiting analytical domain in FEM analysis on wave-induced seabed behaviour through comparison with a theoretical solution

*飯島 琢臣¹、野田 利弘¹、豊田 智弘¹(1. 名古屋大学) *Takumi lijima¹, Toshihiro Noda¹, Tomohiro Toyoda¹(1. Nagoya University) キーワード:海底液状化、有限要素法 Seabed liquefaction, FEM

波浪外力作用下の弾性地盤の変位・応力応答を有限要素法で解いた解と理論解との比較(Verification)を通し て,解析領域が解析解に及ぼす影響について検討した.地盤層厚10mでの検討では,いずれの深さにおいてもご く側壁近傍を除いて,応力も変位も二つの解に大きな差は見られなかった.一方,層厚1000mにおける解析解 は,ある程度深い位置において,応力の側壁近傍での変化が大きく,結果として空間積分して求まる変位の大き な変化が水平方向全体にみられた.また同計算の比較的浅い位置での解析解は,応力について理論解との差は小 さくなったが,下方における壁近傍での応力変化によって変位については,差がみられた.

Effects of limitation of analytical domain on seabed behaviour under wave loading have been assessed with FEM through comparison of the results with a theoretical solution. In simulation of 10-meter-thick seabed, there was no significant gap between numerical and theoretical answers of stress and displacements at any place. Meanwhile, in simulation of seabed with 1000-meter thickness, at some depths, the numerical results showed large distortion of stress distribution near side walls which resulted in distorted isochrones of displacements since they are given by spatial integration of stress.

波浪海底液状化の有限要素解析と理論解の比較による解析領域の打ち切りの影響の検討

名古屋大学	学生会員	○飯島	琢臣
	正会員	豊田	智大
	フェロー会員	野田	利弘

1. はじめに

著者らは、様々な波浪外力・境界条件下での海底地盤の液状化を含む力学挙動を精緻に評価することを見据 え、これまで一次元弾性・弾塑性変形解析を行ってきた¹⁾.本稿では、二次元平面ひずみ条件下で弾性地盤が 進行波の作用を受けたときの応答について、Yamamoto²⁾による半無限地盤の弾性理論解と比較・検証した結果 を示すとともに、半無限地盤を有限の解析領域で打ち切ることが数値解に与える影響について考察した.この 結果、主に次の点を確認した.①地盤層厚を 10m とした場合の検討では、応力、変位ともに理論解と解析解 の差は、いずれの深さにおいても見られなかった.②一方、層厚を半無限長と十分に見做した(1000m)場合 の検討では、ある程度の深さにおいて水平変位固定・不透水を指定した水平壁近傍で各応力成分の理論解と解 析解に著しく差が生じ、系全体の変位についての差につながる.③同計算の比較的浅い位置での解析解は、水 平壁の拘束による応力分布のゆがみが小さく、理論解との差が小さい.

2. 手法の概要

比較のために採用した理論解は Yamamoto²による.定式化の詳細は紙幅の都合上割愛するが,有限層厚を持 ち水平方向に無限に連なる二次元弾性地盤に対し,外力として地盤上面に進行波(微小振幅波)が作用した際 の変位・応力解(ただし,微小変形,平面ひずみ,自重考慮なし)である.一方,有限要素法を用いて同様の 現象を解く場合,地盤を有限の領域で打ち切る必要がある.本稿では,地盤モデルを図1のように設定し,層 厚 d を 10 m または 1000 m として解析を行った.この結果を Yamamoto の理論解と比較し解析領域打ち切り の影響について検討した.境界条件は,地盤下部で非排水・鉛直水平変位固定,側面で非排水・水平変位固定, 上面で排水・変位非拘束とした.また上面には理論解と同様,正弦波としての進行波圧uwoを鉛直方向に作用 させた.地盤の物性及び波浪外力の形態は,表1のように与 表1 物性値,外力条件

物性値					
透水係数 k [cm/s]	1.0×10^{-2}				
弹性係数 <i>E</i> [kPa]	1.4×10^{5}				
ポアソン比 ν	0.3				
水の体積弾性係数 K_f [kN/m ³] [※]	infinity				
水の単位体積重量 γ_w [kN/m ³]	9.81				
外力条件					
波高 H[m]	5				
境界圧振幅 a_0 (= $H\gamma_w/2$) [kPa]	24.53				
周期 T [s]	1.3×10^{5}				
角速度 $\omega (= 2\pi/T)$ [rad/s]	4.83×10^{-5}				
波長 L[m]	16.75				
波数 $\lambda \ (= 2\pi/L) \ [rad/m]$	0.038				
波速 C (=L/T) [m/s]	1.29×10^{-4}				
ホワノンL V 水の体積弾性係数 K_f [kN/m ³] [※] 水の単位体積重量 γ_w [kN/m ³] 外力条件 波高 H [m] 境界圧振幅 a_0 (= $H\gamma_w/2$) [kPa] 周期 T [s] 角速度 ω (= $2\pi/T$) [rad/s] 波長 L [m] 波数 λ (= $2\pi/L$) [rad/m] 波速 C (= L/T) [m/s]	$ \begin{array}{r} 0.3 \\ \hline 0.81 \\ \hline 0.83 \\ \hline 0.93 \\ \hline $				

※ 完全飽和を仮定したことによる

キーワード 海底液状化,有限要素法

連絡先

〒464-8603 愛知県名古屋市千種区不老町 TEL052-789-5072

3. 解析結果·検討

解析結果は、十分な数の正弦波を地盤に与えたときの定常状態に着目し、Yamamoto の理論解と比較した. 図 2,3,4 は、それぞれ層厚 d = 10 m の場合の深さ z = 1.9 m, d = 1000 m の場合の深さ z = 1.8 m, および d = 1000 m の場合の深さ z = 20.5 m における水平/鉛直変位 ξ , η と水平有効応力 σ_x' とせん断応力 τ_{xz} の当時曲線で、定常波到達後の代表的時刻で水平方向に見たものである.比較のため、いずれの図にも Yamamoto の理論解を併記した.まず、d = 10 m の解析では、どの深さにおいても、図 2 のように鉛直壁のごく近傍(およそ 10m 以内)を除き、応力・変位いずれも理論解と解析解が一致することがわかる.一方、d = 1000 m の解析の比較的浅い位置(z = 1.8 m)では、図 3 のように有効応力の成分はd = 10 m の解析と同様に一致するが、 η について鉛直壁からおよそ 70 m 以内で大きく理論解と解析解に差が生じている.すなわち、図 4 に示されるように、遠方の波圧変動の影響を受けやすい地盤深部では、近傍の波圧変動の影響しか受けない浅部に較べて、解析解の応力分布が壁近傍でゆがみやすいため、応力を空間的に積分して求まる変位解が、中央近傍の位置においても理論解から大きくかけ離れることとなる.

4. おわりに

本報では、進行波作用下にある有限層厚を有する二次元弾性地盤の波浪変形解析を実施し、地盤の水平方向の無限の広がりを仮定した Yamamotoの理論解と有限要素解の比較により、解析領域の打ち切りの影響として二つの解の乖離は解析地盤の層厚が大きいほど顕著になることを示した.今後は、層厚 d に対し、模型水平長 h を波長 L に対しどの程度確保すると、解析領域中央で変位および有効応力が正しく評価できるか検証を進める.本研究で得られた知見は、有限規模の模型実験の結果がどの程度実地盤の変形を正しく捉えられているかを評価する手がかりになる.また、地盤の弾塑性(履歴依存性)の影響についても併せて検討してゆく. 謝辞 本研究は、科学研究費補助金(若手研究:課題番号 22K14324)の補助を受けて実施した.

参考文献

1) 飯島, 豊田, 野田(2021): 圧縮性間隙流体と多次元波浪に着…, 第56回地盤工学研究発表会, submitted.

2) Yamamoto, T.(1977): Wave induced instability in seabeds, Proc. Coastal Sediments, '77 AXE, pp. 898-913.