締固め	盛土	地震応答解析

名古屋大学 国際会員 名古屋大学 学生会員

○酒井崇之 中野正樹 野々山栄人 津本翔太 鈴木一成

1 はじめに

別報では 5 つの締固め特性の異なる試料に対し,非排水三軸試験を実施し, せん断挙動を比較考察した¹⁾.本報告では,そのせん断挙動を弾塑性構成モデ ル Super/subloading Yield Surfaces Cam-clay model²⁾(以後 SYS Cam-clay model) により再現する.そして,締固めが盛土材のせん断挙動におよぼす影響を骨 格構造概念に基づき解釈する.また,SYS Cam-clay model を搭載した水〜土 連成動的有限変形解析プログラム GEOASIA³⁾を用いて,これらの盛土材を用 いた盛土の地震時安定性計算を行い,締固め特性と盛土の地震時安定性との 関係把握を目指す.

2 SYS Cam-clay model による締固めた土のせん断挙動の解釈

SYS Cam-clay model は土の骨格構造を「構造」「過圧密」「異方性」の 3 つで表現し,それらの変化が記述できる弾塑性構成モデルである.すなわち,本モデルの大きな特徴は,塑性変形に伴う骨格構造の進展の速さを,「発展 則」により制御することで,典型的な粘土や砂の力学挙動を同じ枠組みで説 明する点にある(後述する表 1 の正規圧密土化指数や構造劣化指数が,進展 速さを制御する).図1は,文献1)で報告した試料 A~E の非排水三軸試験 結果と SYS Cam-clay model の再現結果を示す.試料 A, B, C, Dに対しては 締固め度 D_c が 90, 95, 100%の挙動を再現し,試料 E は D_c が 85, 90, 95%の 挙動を再現した.太い線が実験結果,細い線が計算結果を示す.両者を比較 すると,計算結果は実験結果をよく表現している.なお,他の拘束圧につい ても同様に再現している.

表1,表2は再現計算に用いた試料の材料定数および初期値をそれぞれ示す. 表1に示すように、一つの材料に対し材料定数は1組で固定している.その 理由は、たとえ*D*。が異なって締固め後のせん断挙動が変わろうとも、材料は 同じだからである.*D*。に応じて変わるのは、表2に示す初期値、すなわちそ の材料の比体積や構造、過圧密の初期状態の値である.なお表1の構造劣化 指数や正規圧密土化指数は、値が大きいほど構造が劣化しやすく、過圧密は 解消しやすい.また構造高位な土は表2の構造の程度が大きくなる.

それぞれの試料において、表 1、表 2 から構造,過圧密の進展速さや初期値 に注目し、骨格構造概念に基づきせん断挙動を考察する.試料 A や試料 E の ように締固め試験で得られた最大乾燥密度 $\rho_{d \max}$ が大きい試料¹⁾は、構造の 劣化,過圧密の解消が非常に速い.一方,試料 C,D のように締固 め試験で得られた $\rho_{d \max}$ が小さい試料¹⁾は、構造が劣化しづらく、 過圧密の解消が遅いという結果が得られた. $\rho_{d \max}$ が大きい試料 ほど構造の劣化が速い.しかし、今回の試験では、過圧密の解消速 度と $\rho_{d \max}$ の間に相関はみられなかった.初期値に着目すると、 全試料において、締固め度の上昇とともに、構造が劣化し、過圧密 が蓄積される.また、 $\rho_{d \max}$ が小さい試料 C は締固めても構造が 劣化しづらく、過圧密が蓄積しにくい.このような試料は、締固め に適さない材料と推察できる.また、表 1 から、試料 A,B の

我下的样足效								
試料名	А	В	С	D	ш			
弾塑性パラメータ								
圧縮指数	0.07	0.11	0.13	0.11	0.11			
膨潤指数	0.01	0.02	0.01	0.01	0.02			
限界状態定数	1.48	1.35	1.45	1.50	1.20			
NCL の切片	1.50	1.71	2.07	1.95	1.44			
ポアソン比	0.30	0.30	0.30	0.40	0.30			
発展則パラメータ								
正規圧密土化指数	5.00	0.50	1.30	1.50	10.0			
構造劣化指数	10.0	2.00	0.80	1.00	10.0			
塑性指数	1.00	1.00	0.40	0.50	1.00			

 $D_e = 95\% \sim 100\%$ や試料 D の $D_e = 90\% \sim 95\%$ の初期過圧密比に着目すると、締固めによって過圧密が急激に上昇している. この時、実験結果の軸差応力qの上昇がみられる.つまり、締固めによるqの上昇は過圧密の蓄積によるものであると

Seismic analysis of embankment with different compaction properties

Sakai, T., Nakano, M., Nonoyama, H.,

Tsumoto, S. and Suzuki, K. (Nagoya University)

考えられる.

3. 異なる締固め度・盛土材で作製された盛土の地震応答解析

図 2 は解析に用いた盛土と地盤の全断面図である.地盤は透水性の低い固い地盤を想定している.盛土高さは 6m,勾配は 1:1.5 である.天端の横幅は 12m で,片側 1 車線の道路盛土に 対応する.水理の境界条件は,図 2 の通り左右両端および下端 が非排水条件であり,上端(地表面)が大気圧となっている.ま た,水位面と地表面は常に等しい状態である.つまり地盤,盛 土は常に飽和状態を仮定している.地震前は,下端全節点の水 平・鉛直座標を固定する.両端には「周期境界」を仮定し,等 変位条件を設けている.地震中,地震後は地震波の全反射を防 ぐため,地震時には下端の水平方向に粘性境界⁴⁾を設けた.図 3 は入力地震動を示す⁵⁾.入力地震動は東海・東南海・南海三 連動地震を想定した海溝型の地震動である.

表 2 初期値 試料名 Dc 比体積 構造の程度 過圧密比 1.55 1.50 3.77 90 95 1.47 1.30 13.2 А 100 1.40 1.10 32.0 1.72 1.30 8.10 90 В 95 1.64 1.20 19.1 100 1.56 1.10 42.5 90 2.17 2.20 5.1 С 95 2.08 9.8 1.90 100 1.98 1.40 16.2 90 1.99 3.20 11.3 D 95 1.85 2.70 38.8 100 1.79 1.50 36.0 85 1.62 1.10 1.2 Е 90 1.53 1.05 3.0 95 1.45 5.6 1.01

図4は試料A,B,Cにより作製した盛土の地震直後におけるせん断 ひずみ分布をそれぞれ示す.D_cが上昇することにより,地震による盛 土の変形が小さくなる.D_cの上昇は,盛土の耐震性を向上させる.試

料 A は D_c が 90%の時はひずみが発生するが、 D_c が 95,100%の時は地震中〜地震後で安定した挙動を示した. 試料 B は D_c が 90%の時は、地震により法尻にせん断ひずみが発生し、大きく変形している.しかし、 D_c が上昇するに伴い、地震により発生するせん断ひずみが小さくなる. 試料 C は D_c が 90,95%の時は非常に大きいひずみが盛土全体に進展し、大変形をしている. D_c が 100%でも法尻にせん断ひずみが発生するが、変形はかなり抑制できている.盛土を締固めることによる盛土の耐震性の向上は、文献 1)の三軸試験における「締固め効果」と対応している.

4.まとめ

SYS Cam-clay model により,各試料 に対し1組の材料定数で, D_c の違い は構造,過圧密の初期値の違いによっ て,せん断挙動を再現できた. D_c の 増加は,構造の喪失と過圧密の蓄積を もたらし,とくに締固めによりqの最 大値が急激に上昇している時,過圧密 が急激に蓄積する.締固め曲線の $\rho_{d \max}$ が大きい試料は,構造の劣化, 過圧密の解消が非常に速く, $\rho_{d \max}$ が小さい試料は,構造が劣化しづらく, 過圧密の解消速度は中程度である.

GEOASIA による地震応答解析により、締固め特性の異なる盛土材や D_c の違いで盛土の変形に差が現れた.また D_c を上昇させることで盛土の耐震性が向上することを示した.

なお本報告は、科学研究費補助金(基盤研究(S):課題番号 21226012)の助成を受けたものである.また北海道大 学の三浦清一教授(独)および、土木研究所寒地土木研究所の佐藤厚子氏よりデータを提供して頂いた.ここに記して感 謝申し上げる.

【参考文献】1) 中野正樹他(2012): 締固め特性の異なる盛土材用のせん断挙動の把握と比較,第47回地盤工学会研究発表会(本誌). 2) Asaoka, A. et al. (2002): An elasto-plastic description of two distinct volume change mechanisms of soils, Soils & Foundations, Vol.42, No.6, pp.47-57. 3) Noda, T. et al. (2008): Soil-water coupled finite deformation analysis based on a rate-type equation of motion incorporating the SYS Cam-slay model, Soils & Foundations, Vol.48, No.6, pp. 771-790. 4) William, B. et al. (1975): Calculation of nonlinear ground response in earthquakes, Bulletin of the Seismological Society of America. Vol.65, No.5, pp. 1315-1336. 5) 内閣府(2004): 東南海、南海地震公開データ.